Live imaging of root-bacteria interactions in a microfluidics setup.
نویسندگان
چکیده
Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.
منابع مشابه
Shining a light on the dark world of plant root-microbe interactions.
Interactions between bacteria and roots are critical to the terrestrial ecosystem. The zone of soil immediately surrounding roots is known as the rhizosphere and the surface of the root the rhizoplane (1, 2). This region is of paramount importance to the growth and productivity of plants because it is the main area where they interact with an enormously complex microbial community, the microbio...
متن کاملWhen does the self-regulatory response elicited in soybean root after inoculation occur?
The inoculation of soybean (Glycine max L.) roots with Bradyrhizobium japonicum produces a regulatory response that inhibits nodulation in the younger regions of the roots. By exposing the soybean roots to live homologous bacteria for only a short period of time, the question of whether or not early interactions of rhizobia with root cells, prior to infection, elicit this regulatory response ha...
متن کاملUtilization of Electronic Portal Imaging Device (EPID) For Setup Verification and Determination of Setup Margin in Head and Neck Radiation Therapy
Introduction: Radiation therapy involves a multistep procedure; therefore, the error in patient set up is an inherent part of the treatment. Main purpose of this study was to determine the clinical target volume (CTV) to planning target volume (PTV) in head and neck cancer patients. Material and Methods: A total of 15 patients who had daily p...
متن کاملCd accumulation abilities of annual alfalfa (Medicago scutellata L.) by humic acid and growth promoting bacteria association. Hossein Hassnapour Darvishi1* and Milad Kamajian2
This experiment was carried out to study the effect of humic acid and growth promoting bacteria on uptake of cadmium heavy metal by annual alfalfa (Medicago scutellata L.). The experiment was arranged in pot experiment conditions in Isfahan, Iran in 2011. A factorial design was used based on completely randomized block design with four replications. Experimental treatments were humic acid and g...
متن کاملA coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals
Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 17 شماره
صفحات -
تاریخ انتشار 2017